Gene regulation Lecture 2: Chromatin structure and function

Dr. Mohamed Kamal

Lecturer of Molecular Biology E.mail: <u>mk-saleh1980@yahoo.com</u>

Notes:

* A list of contact details

* Journal club schedule (practical)

* Exam next week

Chromatin:

*Why do we have to study chromatin? Definition:

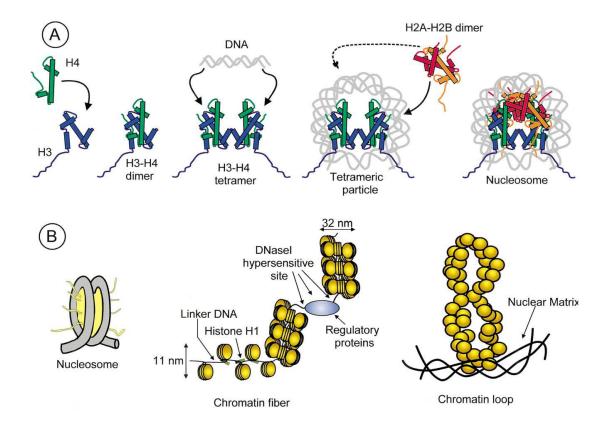
It is the combination between DNA and histones.

Function:

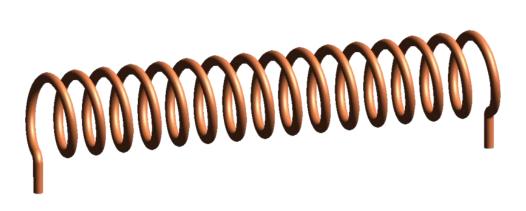
Packaging DNA into a small volume to fit in the cell.

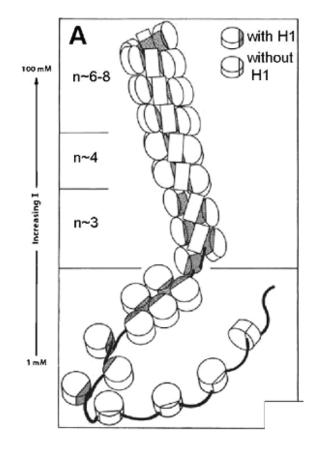
- * Allow mitosis and meiosis
- *Control gene expression and DNA replication
- Strengthen DNA to protect it from damage.

Chromatin Organization:

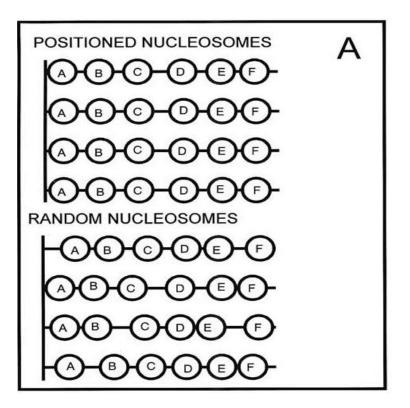

Euchromatin: DNA wraps around histone proteins forming a structure known as <u>nucleosome</u>.

Heterochromatin: Multiple nucleosomes wrap into a fibre consisting of nucleosome arrays.


Higher level DNA packaging: represents the most compact form of DNA packaging (metaphase chromosome).

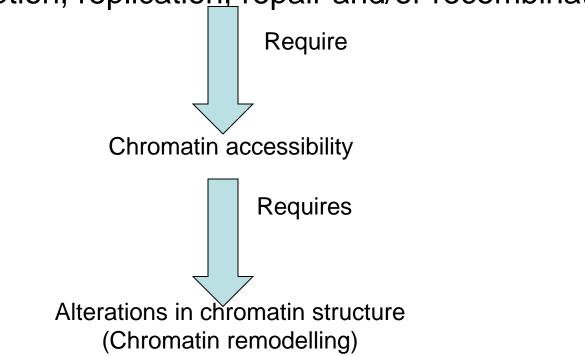

Exercise: Compare between Eu and heterochromatin in terms of chemical modifications.

Nucleosome: 146 base pairs (bp) of DNA coiled around a core consisting of a histone octamer (H2A, H2B, H3, and H4).



Chromatin fibers:

Nucleosome positioning:

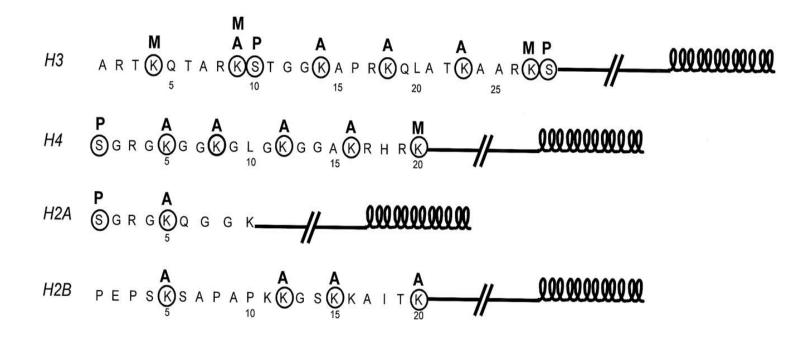

Nucleosome modulation:

Definition: Substitution of one of the histones for a variant counterpart.

*Histone H2A.Z >> marker for the active chromatin

* Phosphorylated Histone H2AX DNA double strand breaks

DNA transcription, replication, repair and/or recombination



Chromatin remodeling

Histone modifications ATP-dependent chromatin remodeling complexes

Posttranslational modification of histones

(Acetylation, methylation, phosphorylation, poly-ADP ribosylation, and ubiquitination of histone amino termini) Affinity of Histones to DNA

Histone code: It is a code formed by a combination of the positioning and modification of the histones.

* Histones code is called epigenetic 'memory' that is passed from mother cell to daughter cell and form epigenome.

Histone acetylayion

Addition of acetyl groups to lysines in N-terminus of core histones.

Charge neutralization

Active transcription

Histone acetylayion

Histone acetytransferases

<u>(HATS)</u>

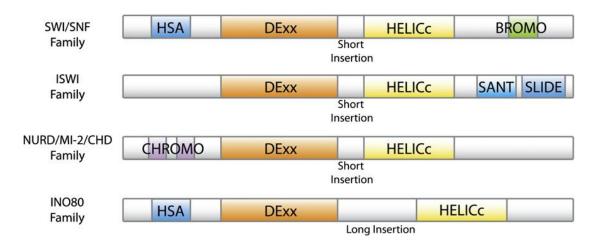
Histone deacetylases

(HDACS)

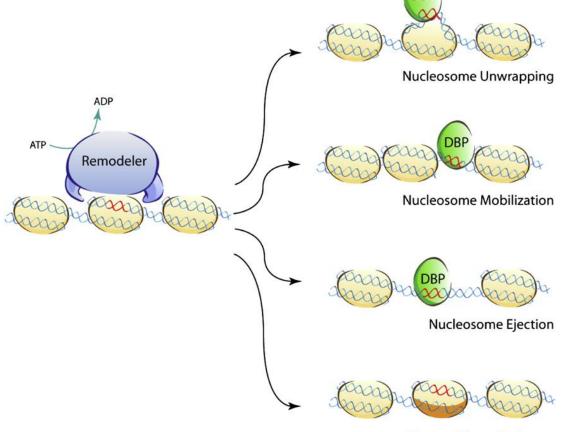
*GNAT	18 mammalian HDACs
*MYST	*ClassI HDACs (HDAC1, -2, -3 and -8)
p300/CBP	*ClassII HDACs

Table 1

Human enzymes involved in DNA methylation, histone acetylation and poly-ADP-ribosylation of histone and non-histone proteins

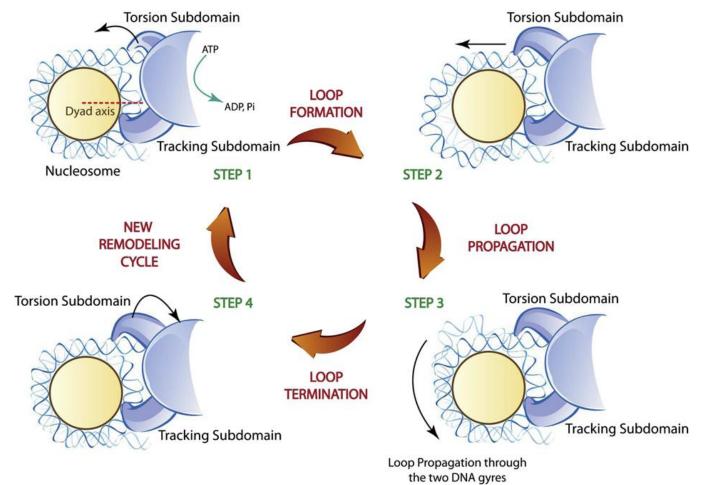

DNA methylation		Histone acetylati	on	Poly-ADP-ribosylation	
DNMTs [17,237]	DNA demethylases [17]	HATs families [3]	HDACs [39,84,129]	PARPs [174]	PARG [174]
DNMT1	MBD2	GNAT	Class I: HDAC1, HDAC2, HDAC3, HDAC8	PARP-1	
				PARP-2	
				PARP-3	
DNMT2	5-MCDG				
DNMT3A		P300/CBP	Class II (<i>IIa</i>): HDAC4, HDAC5, HDAC7, HDAC9	vPARP	PARG
DNMT3B	G/T MMR enzyme			Tankyrase-1	
DNMT3L	MBD4	MYST	Class II (IIb): HDAC6, HDAC10	Tankyrase-2	
			Class III: SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7	TiPARP	
			Class IV: HDAC11		
DNMT: DNA m	ethyltransferases; MMR: misma	atch repair; MBD: meth	yl CpG-binding domain; meCs: methyl ci osir	nes; HAT: histone acetylt	ransferases; GNAT:
	•		T: named for the founding members of this HA		
	-		polymerases; PARG: poly-ADP-ribose-ribose	-	

ATP-dependent chromatin remodeling complexes


*Bind DNA and use the energy from ATP hydrolysis to move the histone octamers *Recognize Histone modifications and recruit transcription factors

*Large (>1 MDa) multi-component complexes

* 4 different families



ATP-dependent chromatin remodeling complexes

Histone Dimer Exchange

ATP-dependent chromatin remodeling complexes

Chromatin function Chromatin remodeling and diseases

Histone acetylation Histone hypoacetylation HATs over-expression	Prostate Breast, ovarian
PCAF Mutation	Ovarian, colorectal
P300 Missense or truncating mutation Translocation	Colorectal, gastric Leukemia
CBP Mutation or deletion Translocation	Lung AML
MOZ/MYST3 Translocation	AML
HDAC1 over-expression	Gastric Prostate Colon Breast
HDAC2 over-expression HDAC6 over-expression HDAC10 reduced expression SIRT7 over-expression	Gastric Breast (ERα-positive) Lung Thyroid

Epigenetic therapies: HDACs inhibitors

References and further readings

1- Morales V, etal. (2001) Chromatin structure and dynamics: Functional implications. Biochimie 83:1029–1039

2- Daban J. (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 42: 733–750

3- Lafon-Hughes L, etal. (2008) **Chromatin-remodelling mechanisms in cancer**. Mutation Research 658:191–214

4- Tang L, etal. (2010) **Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription.** Progress in Biophysics and Molecular Biology 102: 122e128

5- Quina A, etal. (2006) **Chromatin structure and epigenetics**. Biochemical pharmacology 72: 1563–1569

